Closest pair and the post office problem for stochastic points
نویسندگان
چکیده
منابع مشابه
Closest Pair and the Post Office Problem for Stochastic Points
Given a (master) set M of n points in d-dimensional Euclidean space, consider drawing a random subset that includes each point mi ∈ M with an independent probability pi. How difficult is it to compute elementary statistics about the closest pair of points in such a subset? For instance, what is the probability that the distance between the closest pair of points in the random subset is no more ...
متن کاملEfficient Algorithms for the Closest Pair Problem and Applications
The closest pair problem (CPP) is one of the well studied and fundamental problems in computing. Given a set of points in a metric space, the problem is to identify the pair of closest points. Another closely related problem is the fixed radius nearest neighbors problem (FRNNP). Given a set of points and a radius R, the problem is, for every input point p, to identify all the other input points...
متن کامل2D Closest Pair Problem: A Closer Look
A closer look is taken at the well-known divide-andconquer algorithm for finding the closest pair of a set of points in the plane under the Euclidean distance. An argument is made that it is sufficient, and sometimes necessary, to check only the next three points following the current point associated with the y-sorted array in the combine phase of the algorithm.
متن کاملA Reliable Randomized Algorithm for the Closest-Pair Problem
The following two computational problems are studied: Duplicate grouping: Assume that n items are given, each of which is labeled by an integer key from the set {0, . . . , U − 1}. Store the items in an array of size n such that items with the same key occupy a contiguous segment of the array. Closest pair: Assume that a multiset of n points in the d-dimensional Euclidean space is given, where ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geometry
سال: 2014
ISSN: 0925-7721
DOI: 10.1016/j.comgeo.2012.10.010